Graphs and Genomes Michael Schatz

Bioinformatics Lecture 3
Undergraduate Research Program 201I

Recap

- Algorithms choreograph the dance of data inside the machine
- Algorithms add provable precision to your method
- A smarter algorithm can solve the same problem with much less work
- Techniques
- Analysis: Characterize performance, correctness
- Modeling: Characterize what you expect to see
- Binary search: Fast lookup in any sorted list
- Divide-and-conquer: Split a hard problem into an easier problem
- Recursion: Solve a problem using a function of itself
- Indexing: Focus on just the important parts
- Seed-and-extend:Anchor the problem using a portion of it
- Brute Force, Suffix Arrays, Binary Search, Quicksort, Bowtie

Challenge Question

Using Bowtie (bowtie -v 0 -a --norc) or your own implementation of the brute force algorithm, scan the E. coli KI2/MGI 655 genome for GATTACA:

http://schatzlab.cshl.edu/teaching/201 I/Ecoli.fa

http://schatzlab.cshl.edu/teaching/201 I/GATTACA.fq.

Compute the number of occurrences for each of the following queries, and the degree to which the empirical number of matches is consistent with the theoretical e-value. Point out any particularly significant deviations from the theoretical model.

Gattaca:	GATTACA
Gattaca^2:	GATTACAGATTACA
Gattaca^3:	GATTACAGATTACAGATTACA
Start Codon:	ATG
Stop Codons:	TAG,TAA,TGA

Challenge Response

Sequence	Observed	Expected	Difference
GATTACA	230	283	-19%
GATTACA 2	0	0.01	-
GATTACA 3	0	0	-
Start:ATG	76238	72494	$+5 \%$
Stop:TAG	27243	72494	-62%
Stop:TAA	68838	72494	-5%
Stop:TGA	83491	72494	$+14 \%$

© 1997 Oxford University Press
Codon bias in Escherichia coli: the influence of codon context on mutation and selection

Otto G. Berg* and Pedro J. N. Silva ${ }^{+}$
Department of Molecular Biology, University of Uppsala Biomedical Center, Box 590, S-75124, Uppsala, Sweden
Received November 27, 1996; Revised and Accepted February 13, 1997

Outline

I. Part I: Graphs
I. Genome Assembly by Analogy
2. Graph Searching
2. Part 2: Schatz Lab
I. A little about me
2. Projects

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was thevbesther bestimfetsimiesyas thae thorstor	of times, it was the	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was

```
it was the age of
```

it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

```
It was the best of
    was the best of times,
the best of times, it
best of times, it was
of times, it was the
of times, it was the
                    times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_{k}=(V, E)$
- $\mathrm{V}=$ All length- k subfragments ($\mathrm{k}<\mathrm{I}$)
- $\mathrm{E}=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Graphs

- Nodes
- People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
- A is connected to B
- A is related to B
- A regulates B
- A precedes B
- A interacts with B
- A activates B
- ...

Graph Types

Kevin Bacon and Bipartite Graphs

Find the shortest path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops
Bacon Distance:
2

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $\mathrm{O}(|\mathrm{E}|)=\mathrm{O}\left(|\mathrm{N}|^{2}\right)$
- What if we wanted to compute the shortest path visiting every node once?
- Traveling Salesman Problem

$$
\begin{aligned}
& \text { ABDCA: } 4+2+5+3=14 \\
& \text { ACDBA: } 3+5+2+4=14^{*} \\
& \text { ABCDA: } 4+1+5+1=11 \\
& \text { ADCBA: } 1+5+1+4=11 * \\
& \text { ACBDA: } 3+1+2+1=7 \\
& \text { ADBCA: } 1+2+1+3=7 *
\end{aligned}
$$

Greedy Search

Greedy Search
cur=graph.randNode()
while (!done)
next=cur.getNextClosest()

Greedy: \quad ABDCA $=10+10+50+11=81$
Optimal: \quad ACBDA $=11+1|+10+1|=43$

Greedy finds the global optimum only when
I. Greedy Choice: Local is correct without reconsideration
2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
- Knowing optimal tour through n cities doesn't seem to help much for $n+\mid$ cities
[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
- Brute Force: O(n!)
- ~ 20 cities max
- $20!=2.4 \times 10^{18}$

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
- ADBECA $=1+2+2+2+3=10$
$-\mathrm{ABDE}=4+2+30>10$
- ADE $=1+30>10$
- AED $=1+30>10$

- Performance Heuristic
- Always gives the optimal answer
- Doesn't always help performance, but often does
- Current TSP record holder:
- 85,900 cities
[When not?]
- $85900!=10^{386526}$

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
- Extensive searching is the only way to find an exact solution
- Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
- Find a tour the visits every node once (Genome Assembly)
- Find the smallest set of vertices covering the edges (Essential Genes)
- Find the largest clique in the graph (Protein Complexes)
- Find the highest mutual information encoding scheme (Neurobiology)
- Find the best set of moves in tetris
- ...
- http://en.wikipedia.org/wiki/List_of_NP-complete_problems

2 minute break

A Little About Me

Sequencing Applications

Phylogeny \& Evolution

The DNA Data Race

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	$\$ 300,000,000$
2007	Levy et al.	Sanger (ABI)	$\$ 10,000,000$
2008	Wheeler et al.	Roche (454)	$\$ 2,000,000$
2008	Ley et al.	Illumina	$\$ 1,000,000$
2008	Bentley et al.	Illumina	$\$ 250,000$
2009	Pushkarev et al.	Helicos	$\$ 48,000$
2009	Drmanac et al.	Complete Genomics	$\$ 4,400$

(Pushkarev et al., 2009)

Sequencing a single human genome uses $\sim 100 \mathrm{~GB}$ of compressed sequence data in billions of short reads.
~20 DVDs / genome

Sequencing Centers

Next Generation Genomics:World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

The DNA Data Tsunami

Current world-wide sequencing capacity exceeds 33Tbp/day (I2Pbp/year) and is growing at $5 x$ per year!

"Will Computers Crash Genomics?"
Elizabeth Pennisi (201I) Science. 33I(6018): 666-668.

The DNA Data Tsunami

Use massive amounts of sequencing to explore the genetic origins of life

Our best (only) hope is to use many computers:

- Parallel Computing aka Cloud Computing
- Now your programs will crash on 1000 computers instead of just I ©

Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is Google's framework for large data computations
- Data and computations are spread over thousands of computers
- Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
- 946 PB processed in May 2010 (Jeff Dean at Stanford, II.I0.20I0)
- Hadoop is the leading open source implementation
- Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
- GATK is an alternative implementation specifically for NGS
- Benefits
- Scalable, Efficient, Reliable
- Easy to Program
- Runs on commodity computers
- Challenges
- Redesigning / Retooling applications
- Not Condor, Not MPI
- Everything in MapReduce

Parallel Algorithm Spectrum

Embarrassingly Parallel

Map-only
Each item is Independent

Loosely Coupled

MapReduce
Independent-Sync-Independent

Tightly Coupled

Iterative MapReduce Constant Sync

Short Read Mapping

- Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read
- Find where the read most likely originated
- Fundamental computation for many assays
- Genotyping
RNA-Seq
Methyl-Seq
- Structural Variations

Chip-Seq
$\mathrm{Hi}-\mathrm{C}-\mathrm{Seq}$

- Desperate need for scalable solutions
- Single human requires >I,000 CPU hours / genome

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
- Find best alignment for each read
- Emit (chromosome region, alignment)
- Shuffle: Hadoop
- Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
- Scan alignments for divergent columns
- Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome		
Data Loading	3.3 B reads	I06.5 GB	$\$ 10.65$
Data Transfer	$\mathrm{Ih}: 15 \mathrm{~m}$	40 cores	$\$ 3.40$
Setup	$0 \mathrm{~h}: 15 \mathrm{~m}$	320 cores	$\$ 13.94$
Alignment	$\mathrm{Ih}: 30 \mathrm{~m}$	320 cores	$\$ 41.82$
Variant Calling	$\mathrm{Ih}: 00 \mathrm{~m}$	320 cores	$\$ 27.88$
End-to-end	$4 \mathrm{~h}: 00 \mathrm{~m}$		$\$ 97.69$

Discovered 3.7M SNPs in one human genome for $\sim \$ 100$ in an afternoon. Accuracy validated at $\mathbf{> 9 9 \%}$

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. I O:RI34

Map-Shuffle-Scan for Genomics

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead B, Salzberg SL (20I0) Nature Biotechnology. 28:69I-693

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: I68 cores x ~96 hours
- SOAPdenovo (Li et al., 20I0) pthreads: 40 cores $\times 40$ hours, > 140 GB RAM

Graph Compression

- After construction, many edges are unambiguous
- Merge together compressible nodes
- Graph physically distributed over hundreds of computers

Warmup Exercise

- Who here was born closest to July 8?
- You can only compare to I other person at a time

1	OHIOST	75
16	UTSA	46
8	GMU	261
9	nova	57
5	wvo	284
12	CLEM	76
4	UK	259
13	PRINCE	57
-	XAVIER	55
11	mara	,66
3	SYR	77
14	IND ST	0
7	wash	268
10	UGA	65
2	Unc	3102
15	LiU	87

Find winner among 64 teams in just 6 rounds

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Initial Graph: 42 nodes

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 1: 26 nodes (38\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 2: 15 nodes (64\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H} / \mathrm{T}$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 2: 8 nodes (81% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H} / \mathrm{T}$ to each compressible node
- Compress $(\mathbb{H} \rightarrow T$ links

Round 3: 6 nodes (86\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign $(\mathbb{H}) / T$ to each compressible node
- Compress $(H) \rightarrow T$ links

Performance

- Compress all chains in $\log (\mathrm{S})$ rounds

Round 4: 5 nodes (88\% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (I984) ACM Symposium on Theory of Computation. 230-239.

Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly

- Genome: E. coli KI2 MGI655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction

Initial

N
Max
N50

Compressed

245,131
I,079 bp 156 bp

Error Correction

Resolve Repeats

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Contrail

http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome

- Genome: African male NA 8507 (SRA00027I, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210 bp insert ($\sim 40 \mathrm{x}$ coverage)

Initial

N
Max
N50

Compressed

Error Correction

Resolve Repeats

Cloud Surfing

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

De novo mutations and de Bruijn Graphs

Searching for de novo mutations in the families of 3000 autistic children.

- Assemble together reads from mom, dad, affected \& unaffected children
- Look for sequence paths unique to affected child

Illumina/PacBio Hybrid Assembly

Find long reads that align well to the ends of the contigs/scaffolds

- Require $>80 \%$ sequence identity
- Require <100bp overhang
- Require >1 read spans gap

Yeast

151 linked scaffold pairs
Gap sizes: 289 +/- 270bp
Max Gap: 1582bp
Scaffold N50: 125kbp (+54\%)
Scaffolds >500bp: 242 (-36\%)
Scaffolds >1kbp : 210 (-28\%)

Require >50bp match length
Require >-50bp gap span
Require >500bp contig length

Rice

14890 linked scaffold pairs
Gap sizes: 240.5 +/- 269.4
Max Gap: 2680bp
Scaffold N50: ----
(4000 CPU hours until failure)

Structural Variations in Cancer

Use short reads to discover large scale variations

- Discordant Pairs Analysis with Hydra (Quinlan et al. 20I0)

Circos plot of high confidence SVs ${ }^{15}$ specific to esophageal cancer sample

- Red:SV links
- Orange: 375 cancer genes
- Blue: 4950 disease genes

Detailed analysis of disrupted genes and fusion genes in progress

MicroSeq: NextGen Microsatellite Profiling

Mitchell Bekritsky,WSBS

- Class of simple sequence repeats
- ...GCACACACACAT... $=\ldots G(C A)_{5} T \ldots$
- Created and mutate primarily through slippage during replication
- Highly variable \& ubiquitous
- Genotyping with SeqMS
- Rapidly detect MS sequences
- Map reads using a new MS-mapper
- Analyze profiles in cells, across cells, \& across populations
- Loss of heterozygosity
- Development of somatic \& cancer cells
- Relations across strains, across species
- etc...

Summary

- We are witnessing the dawn of the digital age of biology
- Next generation sequencing, microarrays, mass spectrometry, microscopy, ecology, etc
- Modern biology requires (is) quantitative biology
- Computational, mathematical, and statistical techniques applied to analyze, integrate, and interpret biological sensor data
- Don't let the data tsunami crash on you
- Study, practice, collaborate with quantitative techniques

Thank You

